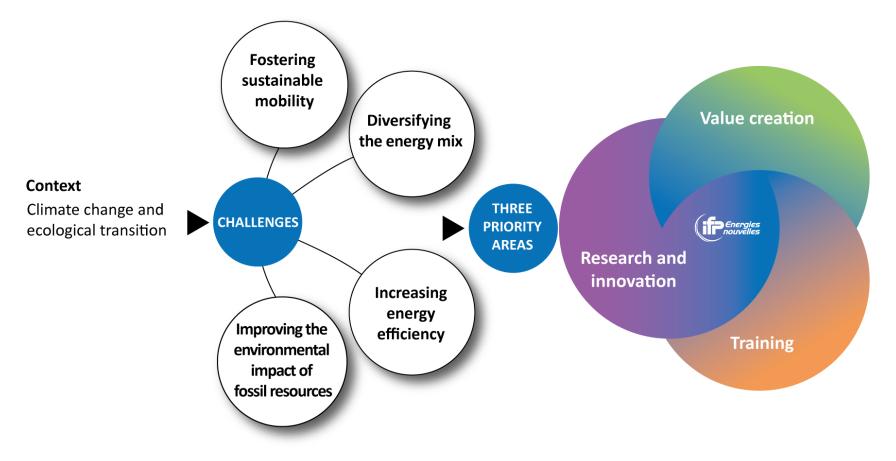
Low-carbon liquid fuels : What impact on Urban Air Quality?

ReFuels Week – June 14, 2021 *By Philippe Dégeilh, IFPEN, R&I Project leader*

AGENDA

Introduction – IFPEN

Ongoing study on PHEV


- Vehicles, fuels and test matrix
- Synthesis of fuel impacts

IFPEN at a glance

An international scope in the fields of energy, transport and the environment

IFPEN ACTIVITIES IN THE FIELD

Producing 2G biofuels: BIOTFUEL[®] PROJECT

Thermochemical conversion to **biodiesel** and **biokerosene**

Construction of **2** pilot units in **2016** with a view to marketing of the process in **2021** by Axens

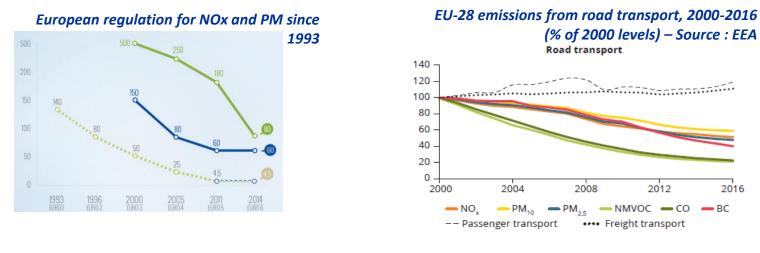
Partners: IFPEN, Axens, CEA, Avril, ThyssenKrupp Industrial Solutions, Total AMI Biojet 2020 application Assessing real driving emissions : REAL-e smart sensor

Real-e **connected suitcase**, an **exhaust gas analyser** (CO, CO₂, NOx, PN, NH₃, etc.), for straightforward and fast **evaluation** of **vehicle emissions in real use**

Partnership with the SME Capelec

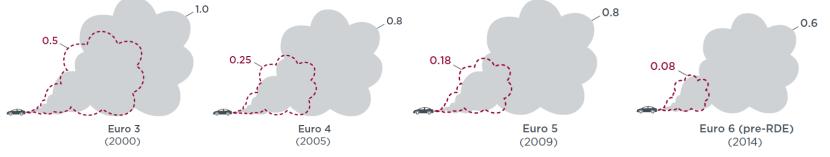
Sustainable climate, environment and circular energies economy

Connected mobility: GECO AIR APPLICATION



 1^{st} free **eco-driving** application for smartphones evaluating pollutant and CO₂ emissions related to individual mobility

Combines information technologies with IFPEN's expertise in the field of powertrain and pollutant modeling



General context on pollutant emissions

Successive regulations aim to reduce the impact on air quality of road transport

Diesel vehicles mean NOx emission in g/km, regulation vs. real-driving – Source : ICCT

However, a gap remained between regulations and actual emissions on the streets up to Euro 6d

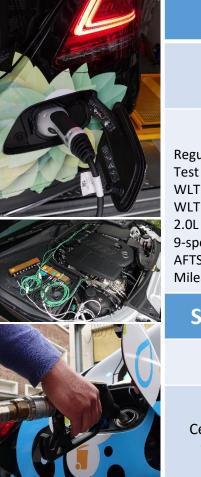
Recent data and studies show that the introduction of RDE (2019) has led to a significant reduction in emissions in real use

> Exceptions persist, and Euro 7 will aim for even more ambitious objectives (levels, conditions and list of pollutants)

Is this panorama strongly impacted by the introduction of non-fossil fuels

for the decarbonation of transport ?

June 14, 2021 – ReFuels Week


Study "EVALUATION OF PLUG-IN HYBRID VEHICLES IN REAL-LIFE CONDITIONS" 2021, IFPEN for CONCAWE

FUELS AND VEHICLES SPECS

Mercedes C300 EQ Power

Battery: 13.5 kWh 365V Electric motor: 90 kW

Gasoline (C300 e)

Regulation : €6d-temp Test mass : 1885 kg WLTP CO2 : CS 146 g/km – Weighted 31 g/km WLTP autonomy (EAR) : 56km 2.0L 4cyl 155 kW turbo Direct injection 9-speed automatic transmission AFTS : **2*TWC + GPF** Mileage: 4.000 km

Standard fuel	Renewable fuel	Standard fuel	Renewable fuel
E10	E20 renewable	B7	HVO
Certification gasoline with 10% ethanol	100% renewable gasoline including 20% ethanol EN228 compliant (except oxygenate content)	Certification diesel with 7% bio-diesel	100% renewable parafinic fuel

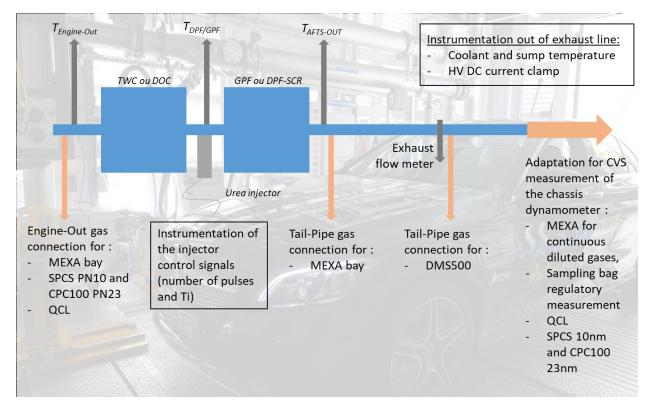
Diesel (C300 de)

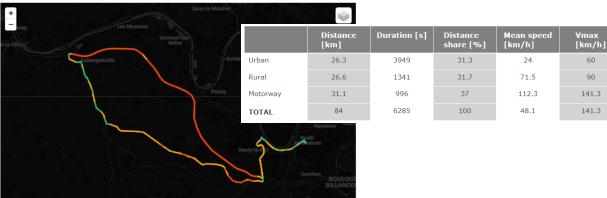
Regulation : €6d-temp Test mass : 1970 kg WLTP CO2 : CS 140 g/km – Weighted 30,5 g/km WLTP autonomy (EAR) : 57km 2.0L 4cyl 143 kW turbo Direct injection 9-speed automatic transmission AFTS : **DOC SCRF-SCR** Mileage: 14.000 km

SUSTAINABLE MOBILITY

 Latest available technologies: PHEV hybrid architecture, thermal engine and after-treatment

 Have demonstrated very low pollutant emission levels with standard fuels on a wide range of conditions, well below the Euro 6 limits (2020 study)


Is this status impacted using fuels from renewable sources?



EXPERIMENTAL SETUP AND TESTS

SUSTAINABLE MOBILITY

 In-deep intrumentation
Vehicle emissions:
Regulated and nonregulated pollutants

- Engine-out and tail-pipe
- PN focus : SPN10/23 EO+TP + DMS500
- Vehicle operation:
 - Battery power
 - Urea system
 - AFTS temperature
 - OBD

Realistic test conditions

- RDE tests on roller test bench
- Speed and slope recorded from real RDE tests operated on open road with these vehicles
- At least 3 repetitions of each test
- Both full and empty modes tested

COMPARISON STANDARD & SPECIFIC FUELS - SYNTHESIS

Impact from standard to renewable fuels		NOx	СО	тнс	SPN10	FC (vol.)	CO ₂ TtW
Gasoline	Engine Out	\rightarrow	\rightarrow	1	\rightarrow	-	-
(E10 to E20)	Tail Pipe	\rightarrow	\rightarrow	From 8% to 12% of standards level	\rightarrow	↑ (~4%)	\rightarrow
Diesel	Engine Out	\rightarrow	Ļ	\rightarrow	\rightarrow	-	-
(B7 to HVO)	Tail Pipe	\rightarrow	From 1.4% to <1% of standards level	\rightarrow	\rightarrow	↑ (7% cs)	↓ (-4% CS)

This summary table gives the <u>trend induced by the switch to a renewable fuel</u>. The absolute levels measured are and remain **less than half that of the current Euro 6d certification levels for each local pollutant considered**.

- Main impacts of renewable fuels are on
 - <u>Volumetric fuel</u> <u>consumption</u> (consequence of energy density)
 - <u>TtW CO2 emissions</u> (consequence of chemical composition)
- The established impacts on local pollutants (gaseous and particulate) are low, both engine out and tail pipe.
- The emissions levels of these two Euro 6d vehicles therefore remain low with the use of fuels from renewable sources.

CONCLUSION & PERSPECTIVES

• Within the current study:

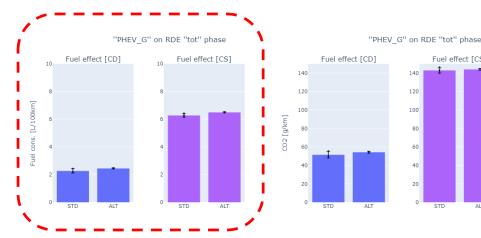
- For the latest generation light vehicles tested, the impacts on local pollutants of switching to low-carbon fuels appear to be low.
- These experimental results will feed into a broader analysis of the performance of PHEVs and compare them to other levels of electrification, from conventional vehicles to fully electric vehicles.

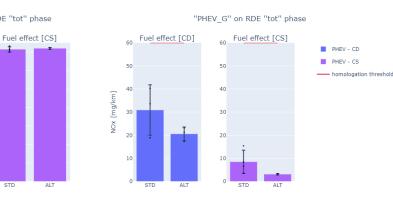
• More generally about air quality:

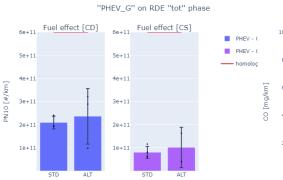
- Use of new communication and information technologies (NTIC, including massive GNSS data and floating vehicle data) for a detailed and localized understanding of real uses and emission impacts
- Optimize the use of technologies to deal with both global and local issues :
 - For PHEV, geofencing "forced" ZEV mode in low emission zones

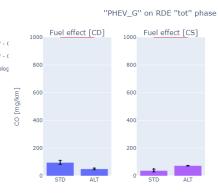
Innovating for energy

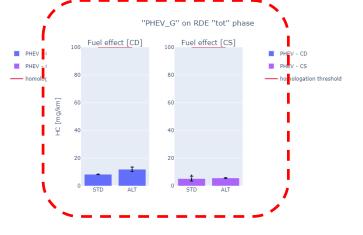
Find us on:


www.ifpenergiesnouvelles.com


@IFPENinnovation




APPENDICES


STANDARD VS. SPECIFIC FUELS – GASOLINE (TP)

SUSTAINABLE MOBILITY

SIGNIFICATIVE IMPACTS :

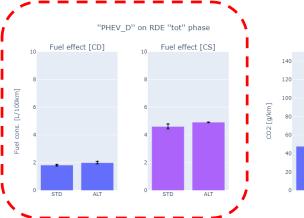
• Fuel consumption

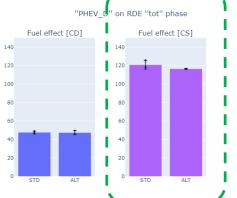
CD: +0.2 L/100km
(8%)

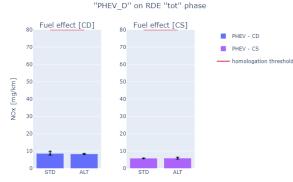
• CS: +0.2 L/100km (4%)

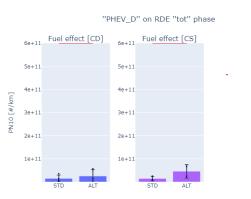
• CO

 the impact depends on the conditions, on levels that are always very low compared to the regulatory threshold

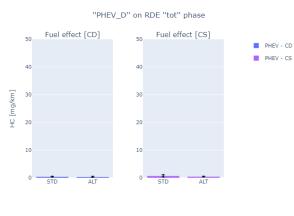





STD = Standard E10 fuel ALT = Alternative E20 fuel


APPENDICES

STANDARD VS. SPECIFIC FUELS – DIESEL (TP)



SUSTAINABLE MOBILITY

• SIGNIFICATIVE IMPACTS :

- Fuel consumption
 - CD: +0.2 L/100km (10%)
 - CS: +0.3 L/100km (7%)
- OCO_2 TtW
 - CS: -4.4 g/km (-4%)
- CO
 - CD: -2.3 mg/km (-33%)
 - CS:-5.5 mg/km (-42%)

STD = Standard B7 fuel ALT = Alternative HVO fuel